Tip II Hatası
Tip II Hatası Nedir?
Tip II hata, aslında yanlış olan boş bir hipotez kabul edildiğinde ortaya çıkan hatayı tanımlayan
İstatistiksel analizde, tip I hata, gerçek bir sıfır hipotezinin reddedilmesidir, oysa tip II hata , kişi gerçekte yanlış olan boş bir hipotezi reddedemediğinde ortaya çıkan hatayı tanımlar . Hata, şans eseri oluşmasa da alternatif hipotezi reddeder.
Temel Çıkarımlar
- Tip II hata, aslında tüm popülasyon için geçerli olmadığında, boş hipotezin yanlış bir şekilde muhafaza edilme olasılığı olarak tanımlanır.
- Tip II hata esasen yanlış bir olumsuzdur.
- Bir tip II hata, boş bir hipotezi reddetmek için daha katı kriterler oluşturarak azaltılabilir, ancak bu, yanlış pozitif olasılığını artırır.
- Analistlerin, tip II hataların olasılığını ve etkisini tip I hatalarla tartması gerekir.
Tip II Hatasını Anlama
İkinci türden bir hata veya bir beta hatası olarak da bilinen bir tip II hata, örneğin, iki gözlemin farklı olmasına rağmen aynı olduğunu iddia etmek gibi reddedilmesi gereken bir fikri doğrular. Tip II hata, alternatif hipotez doğanın gerçek durumu olsa bile, sıfır hipotezini reddetmez. Yani yanlış bir bulgu doğru kabul edilir.
Bir tip II hata, boş bir hipotezi reddetmek için daha katı kriterler oluşturarak azaltılabilir. Örneğin, bir analist% 95 güven aralığının +/- sınırları içinde kalan herhangi bir şeyi istatistiksel olarak önemsiz olarak değerlendiriyorsa (olumsuz bir sonuç), o zaman bu toleransı +/-% 90’a düşürerek ve ardından sınırları daraltarak, daha az olumsuz sonuç alırsınız ve böylece yanlış bir olumsuzluk olasılığını azaltırsınız.
Bununla birlikte, bu adımların atılması, bir tip I hatayla karşılaşma olasılığını artırma eğilimindedir – yanlış pozitif bir sonuç. Bir hipotez testi yapılırken, tip I hata veya tip II hata yapma olasılığı veya riski dikkate alınmalıdır.
Tip II hatayla karşılaşma olasılığını azaltmak için atılan adımlar, bir tip I hatanın olasılığını artırma eğilimindedir.
Tip I Hatalar ve Tip II Hatalar
Tip II hata ile tip I hata arasındaki fark, tip I hatanın, doğru olduğunda sıfır hipotezini reddetmesidir (yani, yanlış pozitif). Tip I hata yapma olasılığı, hipotez testi için belirlenen anlamlılık düzeyine eşittir. Bu nedenle, anlamlılık düzeyi 0,05 ise,% 5 olasılıkla bir tip I hata meydana gelebilir.
Tip II hata yapma olasılığı, beta olarak da bilinen testin gücünün bir eksiğine eşittir. Testin gücü, örneklem büyüklüğünün artırılmasıyla artırılabilir, bu da tip II hata yapma riskini azaltır.
Tip II Hata Örneği
Bir biyoteknoloji şirketinin, iki ilacının diyabet tedavisinde ne kadar etkili olduğunu karşılaştırmak istediğini varsayalım. Boş hipotez, iki ilacın eşit derecede etkili olduğunu belirtir. Boş bir hipotez olan H 0, şirketin tek kuyruklu testi kullanarak reddetmeyi umduğu iddiasıdır. Alternatif hipotez, H, bir, iki ilaç aynı derecede etkili değildir belirtmektedir. Alternatif hipotez, H, bir , reddedilmesi ise tarafından desteklenen doğa durumudur.
Biyoteknoloji şirketi, tedavileri karşılaştırmak için 3.000 diyabet hastası içeren büyük bir klinik çalışma yürütmektedir. Şirket, 3.000 hastayı rastgele iki eşit büyüklükteki gruba bölerek bir gruba tedavilerden birini ve diğer gruba diğer tedaviyi verir. 0.05 önem düzeyini seçer, bu da doğru olduğunda sıfır hipotezinin% 5’lik bir şansı veya bir tip I hata yapma olasılığının% 5’ini reddedebileceğini kabul etmeye istekli olduğunu gösterir.
Betanın 0,025 veya% 2,5 olarak hesaplandığını varsayın. Bu nedenle, tip II hata yapma olasılığı% 97,5’tir. İki ilaç eşit değilse, boş hipotez reddedilmelidir. Bununla birlikte, biyoteknoloji şirketi ilaçlar eşit derecede etkili olmadığında boş hipotezi reddetmezse, tip II hata oluşur.